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1. Introduction and summary

Recently a new example of the AdS/CFT dual pair has been conjectured [1]. It involves the

three-dimensional N = 6 superconformal Chern-Simons theory with gauge group SU(N)×
SU(N) and the theory of M2-branes in the eleven-dimensional geometry AdS4 × S7/Zk,

where k is the Chern-Simons level. In the scaling limit k,N → ∞ with λ = 2π2N/k

fixed, the corresponding M-theory is effectively described by type IIA strings moving in

the AdS4 × CP
3 background.

As shown in [2, 3], the Green-Schwarz action for type IIA string theory on AdS4 × CP
3

with κ-symmetry partially fixed can be understood as the coset sigma-model on the same

space supplied with a proper Wess-Zumino term.1 Indeed, type IIA superstring involves 32

fermionic degrees of freedom (two Majorana-Weyl fermions in ten dimensions of opposite

chirality); due to κ-symmetry only 16 of them are physical. On the other hand, the

sigma model based on the coset space2 OSP(2, 2|6)/SO(3, 1) × U(3) contains 24 fermions.

However, it also exhibits κ-symmetry, which for generic backgrounds allows one to gauge

away precisely 8 fermions. The remaining 16 fermions together with their bosonic partners

render the physical content of AdS4 × CP
3 superstring. The coset sigma model is classically

1See also [4] for the sigma model description in the pure spinor formalism.
2The standard notation for the supergroup in the numerator of the coset is OSP(6|4). We prefer, however,

to use the notation OSP(2, 2|6) to signify that this supergroup is an isometry group of the AdS4 × CP
3

superspace. This notation is also in close analogy with PSU(2, 2|4), which is an isometry of the AdS5 × S5

superspace.
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integrable [2, 3] which opens a way to investigate its dynamics in a way similar to the case

of AdS5 × S5 superstring. In particular, an algebraic curve encoding the solutions of the

classical AdS4 × CP
3 sigma model has been derived in [5]. Further aspects3 of classical

integrability have been investigated in [7].

Complementary, the planar superconformal Chern-Simons theory appears to be inte-

grable at leading order in the weak coupling expansion [8 – 10]. The corresponding Bethe

equations can be embedded into those based on the supergroup OSP(2, 2|6) which provides

a convenient starting point to generalize them to higher loops. This, in conjunction with the

knowledge of the sigma model algebraic curve and experience with the AdS5×S5 case [11],

enabled the authors of [12] to conjecture the all-loop Bethe ansatz which should encode the

anomalous dimensions of gauge theory operators (string states) for all values of λ. Some

tests of the conjectured all-loop Bethe equations have been carried out in [13, 14]. Finally,

the su(2|2)-invariant S-matrix underlying these Bethe equations has been identified [15].

In spite of these interesting developments, the question about quantum integrability of

the AdS4 × CP
3 sigma model remains open. We would like to stress an apparent difference

with the AdS5 × S5 model. In the latter case the corresponding bosonic sigma model is

quantum integrable and this quantum integrability extends to the whole model including

fermions. In the present case, the bosonic model is integrable as well, but quantum correc-

tions to CP
3 are known to spoil its classical integrability [16]. Thus, quantum integrability

of the full AdS4 × CP
3 model, if exists, should essentially rely on inclusion of fermionic

degrees of freedom.

An important tool to investigate the question about quantum integrability is provided

by semiclassical quantization of rigid string solutions [18, 19]. Starting from a simple

classical string configuration, one finds the spectrum of fluctuations around it. Summing

up the fluctuation energies gives the one-loop correction to the classical energy of the

spinning string which can be then compared to the value predicted by the Bethe ansatz.

A particularly convenient AdS5 × S5 solution allowing for an explicit evaluation of the

one-loop energy correction is given by a rigid folded string carrying Lorentz spin S along

AdS5. In the long string approximation the corresponding correction to the energy scales

logarithmically with S and is found [18] to be

δE = −3 log 2

π
log S .

On the gauge theory side, this string solution corresponds to twist two operators with

large Lorentz spin S, for which the difference between the scaling dimension ∆ and spin

S behaves as

∆ − S = f(λ) log S ,

where the function f(λ) is the universal scaling function, also known as the cusp

anomaly [20, 21]. The quantity δE provides the first correction to the strong coupling

value of the cusp anomaly which has been shown [22] to perfectly agree with the Bethe

3We also point out [6], where the Penrose limit, the Landau-Lifshitz limit, the dispersion relation and

giant magnon solutions both in infinite and finite volume have been studied for the AdS4 × CP
3 sigma model.
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ansatz prediction based on the BES equation [17]. The one-loop correction to the long

(S, J)-string, which in addition to the Lorentz spin S also carries angular momentum J

along a big circle of five-sphere, has been obtained in [23] and it provides the leading strong

coupling correction to the so-called generalized scaling function f(λ, J/ log S) [24, 25].

The purpose of the present paper is to perform a similar semiclassical quantization of a

rigid string spinning in the AdS4 ×CP
3 space-time and obtain the corresponding one-loop

energy shift. Namely, we consider a rigid folded string with Lorentz spin S and angular

momentum J along a circle S1 ⊂ CP
3. The gauge theory operators dual to this string

solution are made of two bi-fundamental scalars with S light-cone derivatives distributed

among them, and they transform in the irrep [J, 0, J ] of su(4). By finding the fluctuation

spectrum around the classical solution in the long string approximation, we obtain the

corresponding one-loop energy shift as a function of S and J . In particular, in the limit of

”slow” rotation, J ≪ log S, we find that the corresponding one-loop correction is given by

δE = −5 log 2

2π
log S .

Apparently, this result appears to be in contradiction with the one conjectured in [5].

According to [5], the energy correction should be half of that for the corresponding string

solution on AdS5 × S5, i.e. it should be equal to −3 log 2
2π log S. The conjecture of [5] was

based on the assumption that an unknown function h(λ) entering the all-loop Bethe ansatz

has a vanishing subleading (constant) term at strong coupling. Provided we adopt the same

definition of the cusp anomaly, we see that it is not the case. Clearly, further investigations

are needed to clarify this important issue.

We would like to stress that our computation is a genuine field-theoretic one and

it does not rely on the knowledge of the algebraic curve. It is done exclusively in the

framework of the coset sigma model. As observed in [2], strings which carry only AdS

spin provide an example of a singular string background, because the corresponding κ-

symmetry transformations instead of generic rank 8 have higher rank equal to 12. Thus, to

properly treat the fluctuation spectrum around this singular solution, we keep throughout

the calculations a non-vanishing angular momentum J which can be then regarded as the

regularization parameter. We find that the resulting expression for the one-loop energy

shift admits a smooth limit J → 0, which allows us to obtain the above stated result for

the cusp anomalous dimension of high spin operators. Finally, we notice that in the limit

J ≪ log S the fluctuation spectrum contains 6 massless bosons and 2 massless fermions.

Thus, in opposite to what happens in the AdS5×S5 case [26] where only 5 bosonic massless

excitations are present, a would be ”quantum bosonic CP
3 model” is not splitting off

in this limit.

The paper is organized as follows. In the next section we discuss the coset sigma

model which captures the physics of type IIA strings on AdS4 × CP
3. In section 3 we

present the (S, J)-solution in terms of a coset element. Section 4 is devoted to the analysis

of the fluctuation spectrum around the (S, J)-solution. Finally, in section 5 we compute the

corresponding one-loop energy shift. Appendix A contains the details on the description of

the coset space AdS4 × CP
3. In appendix B we provide a detailed treatment of κ-symmetry

transformations around the (S, J)-solution.
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While preparing this manuscript for submission, the work [27] appeared, which seems

to be in agreement with our findings. We were also informed about [28] where the same

result for the one-loop energy shift was obtained.

2. String action

The sigma model describing strings on the coset space AdS4 × CP
3 has been introduced

in [2]. Denote by A = −g−1dg the flat current constructed out of a coset representative g.

The sigma model action reads as

S = − R2

4πα′

∫
dσdτ L , (2.1)

where R is the radius of the AdS space and the Lagrangian density is the sum of the kinetic

and the Wess-Zumino terms

L = γαβstr
(
A(2)
α A

(2)
β

)
+ κǫαβstr

(
A(1)
α A

(3)
β

)
. (2.2)

Here A(k) denotes a homogeneous component of A of degree k under the Z4-automorphism

Ω and γαβ = hαβ
√
−h is the Weyl-invariant combination of the world-sheet metric hαβ with

det γ = −1. We also use the convention ǫτσ = 1. To ensure κ-symmetry, the parameter κ

in front of the Wess-Zumino term should be equal to ±1.

To proceed, one has to chose an explicit parametrization of the coset element g. We

will pick

g = gOgχ
gB , (2.3)

where g = eχ depends on the odd matrix χ comprising the 24 fermionic degrees of free-

dom of the model. The element g
O

can be chosen in different ways depending on which

commuting isometries we would like to be realized linearly. For instance, one can take4

g
O

=

(
e

i
2
tΓ0

0

0 e−
ϕ

2
(T34+T56)

)
, (2.4)

where t and ϕ are the global AdS time and one of the angles of CP
3, respectively.5 Since

the global symmetry group OSP(2, 2|4) acts on g from the left the isometries corresponding

to constants shifts of t and φ will be realized linearly and they do not act on the fermionic

variables, i.e., fermions are unchanged under the corresponding U(1) transformations [30].

We note that such a parametrization will be suitable for imposition of the uniform light-

cone gauge [31].

4For the definition of gamma-matrices, the so(6) Lie algebra generators Tij , the matrices C4, K4, K, Υ

and Ti appearing throughout the paper see appendix A, and [2].
5In particular, the algebra so(3, 2) has rank two, so that one can choose the diagonal matrices i

2
Γ0 and

1
4
[Γ2, Γ3] as the generators of commuting isometries.
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Finally, the element g
B

comprises all the coordinates parametrizing AdS4 and CP
3

except those which parametrize the element g
O
. Explicitly,

g
B

=

(
g

AdS
0

0 g
CP

)
. (2.5)

The matrix g
AdS

have the following characteristic properties

gt
AdS

C4gAdS
C−1

4 = I , K4gAdS
= gt

AdS
K4 , Γ5g

AdS
= g−1

AdS
Γ5 ,

Analogously, g
CP

obeys the following requirements

gt
CP
g

CP
= I , K6gCP

= gt
CP
K6 .

As the consequence, the element g
B

satisfies the following identity

Υg
B
Υ−1 = g−1

B
, (2.6)

where Υ defines an inner automorphism Ω of the complexified algebra osp(2, 2|6). It is

worth to point out that the matrix g
O

is orthosymplectic but it does not obey eq. (2.6)

satisfied by the element g
B
.

As was explained in [29], a convenient and compact representation of the sigma model

Lagrangian can be constructed in terms of the following matrix G

G =

(
g

AdS
K4g

t
AdS

0

0 g
CP
K6g

t
CP

)
= gBKg

t
B
. (2.7)

By construction, this matrix is skew-symmetric: Gt = −G. Introducing the split

g−1
χ
g−1

O
d(g

O
g

χ
) = F + B , (2.8)

where F and B are odd and even superalgebra elements, respectively, the Lagrangian (2.2)

can be cast in the form [29, 2]

L =
1

4
str
[
γαβ(∂αGG

−1∂βGG
−1 + 4Bα∂βGG

−1 + 2BαBβ + 2BαGBtβG
−1)

+2iκ ǫαβFαGFst
βG

−1
]
. (2.9)

The Lagrangian (2.9) provides a convenient starting point for studying the fluctuation

spectrum around classical solutions of the string sigma model.

3. The (S, J)-string

We choose as the background solution string spinning in the directions φ and ϕ of AdS4

and CP
3 spaces, respectively. This naturally suggests to pick up as g

O
the following matrix

g
O

=

(
e

i
2
tΓ0− 1

4
φ [Γ2,Γ3] 0

0 e−
ϕ

2
(T34+T56)

)
. (3.1)

– 5 –
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Then, the AdS part of the element g
B

can be chosen as follows

g
AdS

= e
i
2
ρ sinψ Γ1− i

2
ρ cosψ Γ3

. (3.2)

Hence, in addition to the global time t, the space AdS4 is parametrized by the non-negative

variable ρ and by two angles, φ and ψ. As to g
CP

, since we distinguish the angle φ, it is

convenient to choose the remaining five coordinates on CP
3 in the same way as was done

in [2], namely, we parametrize g
CP

by one real coordinate x4 and by two complex variables

y1 and y2, see [2] for details. In order to keep the present discussion clear, we refer the

reader to appendix A for the full details concerning the parametrization of g
CP

.

The background solution corresponding to the (S, J)-string can be now obtained by

putting to zero the AdS angle ψ together with the CP
3 coordinates x4 and y1, y2, and

picking up the rotating string ansatz for the remaining variables

t = κτ , φ = ω1τ , ϕ = ω2τ , ρ ≡ ρ(σ) . (3.3)

Of course, the spinning string ansatz is embedded in the subspace AdS3×S1 of AdS4×CP
3,

and, for this reason, the corresponding solution must coincide with the one obtained in [18].

We see that for the rotating ansatz the components of g
B

reduce to

g
AdS

= e−
i
2
ρΓ3

, g
CP

= e
π
4
T5 (3.4)

and, as the consequence the coset element underlying the (S, J)-string solution is of the form

g =

(
e

i
2

κτ Γ0− 1
2
ω1τ Γ2Γ3

e−
i
2
ρΓ3

0

0 e−
1
2
ω2τ(T34+T56)e

π
4
T5

)
. (3.5)

In the next section we will use this representation to find the Lagrangian for fluctua-

tion modes.

Finally, we note that the parameters of the solution (κ, ω1, ω2) are related to the

Noether charges of the model which are the space-time energy E, the AdS spin S, and the

CP
3 spin J as follows

E =
√
λκ

∫
dσ

2π
cosh2 ρ , S =

√
λω1

∫
dσ

2π
sinh2 ρ , J =

√
λω2 . (3.6)

They are, of course, the same as for the (S, J)-string spinning in AdS3 × S1. Here the

parameter λ is related to the AdS radius6 as
√
λ = R2

α′ .

In this paper we are mostly interested in the so-called long string limit corresponding

to ω1, ω2 → ∞ with the ratio u = ω2
ω1

= 1√
1+x2

fixed. In this limit,

κ ≈ ω1 and x =

√
λ

πJ
ln
S

J
fixed . (3.7)

The energy of the long string is then

E = S + J
√

1 + x2 + · · · (3.8)

and it can be further approximated by assuming the ”fast” or ”slow” limits which corre-

spond to taking x≪ 1 or x≫ 1, respectively [23].

6Note that λ is related to the gauge theory parameters k and N as λ = 2π2N/k.
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4. Lagrangian for quadratic fluctuations

4.1 Spectrum of bosonic fluctuations

The Lagrangian for the quadratic fluctuations follows straightforwardly from the bosonic

part of the action (2.9). In the conformal gauge we find

L
(2)
B = − cosh2 ρ ∂αt̃∂

αt̃+ sinh2 ρ ∂αφ̃∂
αφ̃+ 2 sinh 2ρ ρ̃(κ∂τ t̃− ω1∂τ φ̃) + ∂αρ̃∂

αρ̃+

+(κ2 − ω2
1) cosh 2ρ ρ̃2 + sinh2 ρ (∂αψ∂

αψ + ω2
1ψ

2) + ∂αϕ̃∂
αϕ̃

+∂αx∂
αx+ ω2

2x
2 + ∂αvr∂

αv̄r +
ω2

2

4
vrv̄r .

We see that the part of the action for the AdS4 fields t̃, ρ̃, φ̃, ψ and the angular CP
3

variable ϕ̃, shown in the first two lines, exactly agree with those in equation (5.10) of [18].

In addition we have five CP
3 fields, x and two complex fields vr. Furthermore, the linearized

Virasoro constraints read

1

2
(ω2

1 − κ
2) sinh 2ρρ̃− κ cosh2 ρ∂τ t̃+ ω2∂τ ϕ̃+ ω1 sinh2 ρ∂τ φ̃+ ρ′ ∂σρ̃ ≈ 0 , (4.1)

ρ′ ∂τ ρ̃− κ cosh2 ρ∂σ t̃+ ω2∂σϕ̃+ ω1 sinh2 ρ∂σφ̃ ≈ 0 . (4.2)

Obviously, the linearized Virasoro constraints are identical to equations (5.11) and

(5.12) of [18]. Then, the physical fields from CP
3 decouple completely from the rest. As it

can be seen from the Lagrangian and also as shown in [2], these are five massive fields. In

units of ω2, one of these fields have mass m = 1 and the other four m = 1/2.

As for the other fields, in [23] it was shown how to compute the spectrum, in the long

string limit, around the solution we are interested it. According to [23], from the AdS4

fields and ϕ̃ we get three physical fields. One is ψ, with mass m2
ψ = 2κ

2 − ω2
2 , while the

other two modes have frequencies

ΩB
±n =

√
n2 + 2κ2 ± 2

√
κ4 + n2ω2

2, n = 0,±1,±2, . . . (4.3)

In the long string approximation κ ≈ ω1. Notice that in the limit ω1 ≫ ω2, we get one

field with mass (in units of ω1) m
2 = 4, one field with mass m2 = 2 and six massless

fields, as opposed to the situation in AdS5 × S5, where we get two fields of m2 = 2 and five

massless fields. It is these five massless fields which give rise to the O(6) sigma model in

this special limit [26]. As we will see in the next section, in the present case we will also

find two massless fermions in this limit. Hence the situation is pretty different to what

happens in AdS5 × S5.

4.2 Spectrum of fermionic fluctuations

Here we will work out the spectrum of fermionic fluctuations around the (S, J)-string. The

relevant part of the Lagrangian (2.9) contributing the quadratic action for fermions is

L
(2)
F = str

[
1

2
γαβBα(Bβ +GBtβG

−1) + γαβBα∂βGG
−1 +

i

2
κ ǫαβ FαGFst

βG
−1

]
. (4.4)

– 7 –
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According to the formula (2.8), up to terms quadratic in fermions, we have

F = Dχ , B = g−1
O
dg

O
+

1

2
(Dχχ− χDχ) , (4.5)

where we have introduced the covariant differential Dχ = dχ+[g−1
O
dg

O
, χ]. In the conformal

gauge7 we, therefore, find the following quadratic action

L
(2)
F =

1

2
str
[
− (g−1

O
∂τgO +G(g−1

O
∂τgO)tG−1)(Dτχχ−χDτχ)+∂σGG

−1(Dσχχ−χDσχ)
]

+
i

2
κ str

[
DτχG(Dσχ)stG−1 −DσχG(Dτχ)stG−1

]
, (4.6)

where we made use of the fact that g
O

and G do not depend on σ and τ , respectively.

Explicitly,

g−1
O
∂τgO

=

(
i
2κΓ0 − 1

2ω1Γ
2Γ3 0

0 −1
2ω2(T34 + T56)

)
(4.7)

and ∂σGG
−1 = diag(−iρ′Γ3, 0).

It is clear that, in general, fermion masses will depend non-trivially on the non-constant

function ρ(σ) and its derivative which enter in the above Lagrangian through the matrix

G. However, in the long string limit we are most interested in here, one can approximate

ρ′(σ) ≈ const. Thus, in this limit one can attempt to redefine fermions as

χ→WχW−1 , (4.8)

where the role of W would be to remove the ρ-dependence from G. The matrix W ∈
OSP(2, 2|6) must satisfy a few natural requirements. First, under redefinition (4.8) the

covariant differential Dχ undergoes the following transformation

Dχ→ W
(
dχ+ [W−1g−1

O
dgOW,χ] + [W−1dW,χ]

)
W−1 . (4.9)

Thus, if we do not want to introduce an extra dependence on ρ, the matrix W−1dW

should depend on the derivatives of ρ′ only and, when being restricted to its AdS block, it

should commute in the long string limit with the corresponding block of g−1
O
∂τgO

. The last

requirement also guarantees that the kinetic term in eq. (4.13) will not receive an extra ρ-

dependence under such redefinition of fermions. Second, W must commute with ∂σGG
−1,

which is equivalent to the requirement of commuting with Γ3 (naturally embedded into

10 × 10-matrices). This will ensure that the term in the Lagrangian containing ∂σGG
−1

will not receive new ρ-dependent terms. Finally, W must be capable to remove ρ from G,

i.e the element W−1G(W t)−1 should be independent of ρ. The conditions on W stated

above can be satisfied in the long string limit only and they fix W essentially uniquely.

To construct W , we note that in the long string limit κ ≈ w1, so that the AdS part of

g−1
O
∂τgO

becomes proportional to iΓ0−Γ2Γ3 . Thus, we have to find an so(3, 2) Lie algebra

element, such that it commutes with two matrices

iΓ0 − Γ2Γ3 and Γ3 .

7We take γττ = −1 = −γσσ and γτσ = 0.

– 8 –
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One can easily see that the corresponding element is given by

iΓ3 − Γ0Γ2 .

Here Γ3 is the Lie algebra coset representative, while [Γ0,Γ2] belongs to the stability sub-

algebra so(3, 1). The last observation implies that taking W in the form

W =

(
e−

ρ

2
(iΓ3−Γ0Γ2) 0

0 e
π
4
T5

)
, (4.10)

we satisfy all the requirements stated, getting, in particular,

W−1G(W−1)t = K ,

where the matrix K is defined by eq. (A.7). Since e−
π
4
T5(T34 + T56)e

π
4
T5 = −T6, we

see that after redefining the fermions by W , the covariant derivative (4.9) acquires the

following form

Dα = ∂α + [Qα, . . .],

where the composite vector field Qα has the components

Qτ = diag

(
QAdS
τ , −1

2
ω2 T6

)
, Qσ = W−1∂σW , (4.11)

where

QAdS
τ =

1

4

(
κ + ω1

)(
iΓ0 − Γ2Γ3

)
+ (4.12)

+
1

4
(κ − ω1)

[
cosh 2ρ

(
iΓ0 + Γ2Γ3

)
+ sinh 2ρ

(
iΓ2 + Γ0Γ3

)]
.

In the long string limit κ ≈ ω1 the function ρ drops out of Qτ as it should be. Also, by

construction, in the long string limit the commutator [Qα, Qβ ] vanishes, i.e. the connection

Dα becomes flat.

We further note that since χ ∈ osp(2, 2|6) its supertranspose is χst = −CχC−1 and,

therefore, after the redefinition of fermions has been done, the action (4.6) can be cast in

the form

L
(2)
F =

1

2
str
[
− (Qτ − ΥQτΥ

−1)(Dτχχ− χDτχ) + ∂σGG
−1(Dσχχ− χDσχ)

]
+

+
i

2
κ str

[
DτχΥDσχΥ−1 −DσχΥDτχΥ−1

]
. (4.13)

Note that the kinetic term for fermions is projected on the space A(2) as Qτ − ΥQτΥ
−1 ∈

A(2). In particular, in the long string limit

Qτ − ΥQτΥ
−1 ≈ iκΓ0 + ω2T6 .

One can check that for a generic χ the kinetic term of the Lagrangian (4.13) is degenerate

and it has rank 16. This is a manifestation of κ-symmetry which allows one to remove 8
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unphysical fermions out of 24 making thereby the kinetic term non-degenerate [2]. As is

shown in appendix B, an admissible and convenient κ-symmetry gauge choice is

θ T56 = 0 , (4.14)

which removes the fermions from the fifth and the sixth column of χ.

Introducing a 4 by 4 matrix ϑ made of non-vanishing entries of θ, we can write the

quadratic κ-gauge fixed Lagrangian in the long string approximation as follows

L
(2)
F = −κ tr(ϑtΓ3ϑ̇) +

κ
2

2
tr
[
ϑtC4(I + iΓ0Γ2Γ3)ϑ

]
+
ω2

2

4
tr(I − Γ0)ϑtC4ϑ

−ρ′tr(ϑtΓ0ϑ′) +
ρ′2

2
tr
[
ϑtC4(I − iΓ0Γ2Γ3)ϑ

]
(4.15)

+iκρ′ tr(ϑtΓ0Γ5ϑ̇K4) + iκκ tr(ϑtΓ3Γ5ϑ′K4) + κκρ′ tr
[
ϑt(I − iΓ0Γ2Γ3)Γ5ϑK4

]
.

One can check that this action is hermitian provided the fermions satisfy the reality con-

dition ϑ† = iϑtΓ3. Introducing the Dirac conjugate ϑ̄ = ϑ†Γ0 = iϑtΓ0Γ3 = −ϑtC4, we

recognize that the reality condition is nothing else but the Majorana condition.

To compute the one-loop energy shift, one has first to determine the spectrum of

fermion frequencies from the quadratic action (4.15). This is essentially the same as to

solve the corresponding equations of motion. Every solution will be characterized by the

energy k0 and the momentum k1. Then, every zero eigenvalue of the quadratic form

defining (4.15) will give a (dispersion) relation between k0 and k1, while the corresponding

eigenstate will be a solution of the equations of motion. Thus, we may look for the spectrum

of the model by requiring that the determinant of the corresponding quadratic form is zero.

There are as many particles in the theory as there are linearly independent solutions.

This is precisely the strategy we would like to follow in this paper, therefore let us dis-

cuss in more detail some subtleties which we encounter on our way. Combining the fermions

ϑ in one 16-dimensional vector, the action implied by (4.15) can be schematically written as

S = − R2

4πα′

∫
dσdτ (ϑiK

ij
τ ∂τϑj + ϑiK

ij
σ ∂σϑj + ϑiM

ijϑj) . (4.16)

In our treatment we will impose the reality condition on ϑ only at the end of calculation,

i.e. we prefer to start with the action above, where in each term we have two ϑ’s rather

than ϑ and ϑ∗. Varying the action, we get

δS = − R2

4πα′

∫
dσdτ

(
δϑiK̂

ij
τ ∂τϑj + δϑiK̂

ij
σ ∂σϑj + δϑiM̂

ijϑj

)
,

where we have used anti-commutativity of fermions and integration by parts. Here

K̂τ = Kτ +Kt
τ ,

K̂σ = Kσ +Kt
σ ,

M̂ = M −M t.

Thus, equations for motion look as

(K̂τ∂τ + K̂σ∂σ + M̂)θ = 0. (4.17)
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In momentum space the equation above yields

(iK̂τ k0 + iK̂σ k1 + M̂)θ = 0 . (4.18)

As it follows from the discussion above, the spectrum of the model is determined by the con-

dition

D = det
[
iK̂τ k0 + iK̂σ k1 + M̂

]
= 0, (4.19)

where K̂τ and K̂σ are symmetric matrices, and M̂ is antisymmetric. We view (4.19) as an

algebraic equation for k0, and its roots (as functions of k1) give us the dispersion relations

for all particles in the theory.

Computing the determinant, we find

D = 28ω16
2

[
(2k0 − ω2)

2 − 4(k2
1 + κ

2)
]2[

(2k0 + ω2)
2 − 4(k2

1 + κ
2)
]2 ×

×
[
k4
0 − k2

0(2k
2
1 + κ

2) + k2
1(k

2
1 − ω2

2 + κ
2)
]2
. (4.20)

Setting k1 ≡ n ∈ Z, due to the fact that this momentum corresponds to the compact σ

direction of the string world-sheet, yields the following result for the fermionic frequencies

(counting given in terms of elementary fermions, rather than Majorana sets of fermions):

• 2 fermions with frequency ω2
2 +

√
n2 + κ2

• 2 fermions with frequency −ω2
2 +

√
n2 + κ2

• 2 fermions with frequency
√
n2 + 1

2κ2 + 1
2

√
κ4 + 4ω2

2n
2

• 2 fermions with frequency
√
n2 + 1

2κ2 − 1
2

√
κ4 + 4ω2

2n
2

plus the other eight fermions whose frequencies are equal to the above with negative sign.

The reality condition then implies that these negative frequency fermions are nothing else

but the conjugate momenta for the positive frequency ones. The constant shifts by ±ω2/2

in the first four frequencies can be removed by an extra time-dependent redefinition of

fermions, similar to that done in [2]. The resulting dispersion relation is the same as for

relativistic fermions with the mass m2 = κ
2. In any case, even without doing this field

redefinition, the shifts by ±ω2/2 are cancelled out in the one-loop energy correction. In

the special limit κ ≈ ω1 ≫ ω2 the spectrum above will contain two massless fermions.

5. One-loop energy shift

Having found the frequency modes of bosons and fermions, we can readily compute the

one-loop correction to the energy of the long (S, J)-string. This computation is very similar

to that of [23]. The one-loop correction to the energy is given by the following sum

δE =
1

ω1

∞∑

n=1

[(
ΩB

+,n + ΩB
−,n +

√
n2 + 2ω2

1 − ω2
2 +

√
n2 + ω2

2 + 4

√
n2 +

ω2
2

4

)
−

−
(

2ΩF
+n + 2ΩF

−n + 4
√
n2 + ω2

1

)]
, (5.1)

– 11 –



J
H
E
P
1
1
(
2
0
0
8
)
0
8
9

where

ΩF
±,n =

√
n2 +

ω2
1

2
± 1

2

√
ω4

1 + 4ω2
2n

2 , (5.2)

are the non-trivial fermionic frequencies found in the previous section. It is gratifying to

see that the divergencies of bosons cancel against those of fermions, so that the sum (5.1)

is convergent.

We are most interested in the value of the sum in the scaling limit, ω1, ω2 → ∞ with

u = ω2
ω1

fixed. Following [23], in this limit, the sum can be replaced by an integral

δE = ω1

∫ ∞

0
dp

[(
ΩB

+(p) + ΩB
−(p) +

√
p2 + 2 − u2 +

√
p2 + u2 + 4

√
p2 +

u2

4

)
−

−
(

2ΩF
+(p) + 2ΩF

−(p) + 4
√
p2 + 1

)]
, (5.3)

where

ΩB
±(p) =

√
p2 + 2 ± 2

√
1 + p2u2, ΩF

±(p) =

√
p2 +

1

2
± 1

2

√
1 + 4p2u2 . (5.4)

The simplest way to compute the integral is to impose a cut-off and send it to infinity at

the end of the computation. The integrals involving ΩB and ΩF can be simplified by using

the identities

ΩB
+(p) + ΩB

−(p) =

√
4u2 + (p+

√
p2 + 4 − 4u2)2 ,

ΩF
+(p) + ΩF

−(p) =
1

2

√
4u2 + (2p +

√
4p2 + 4 − 4u2)2 .

Notice that these two expressions are related as

ΩB
+(p) + ΩB

−(p) = 2ΩF
+(p/2) + 2ΩF

−(p/2).

The integrals can then be easily performed by making the change of variables p → q =

p+
√
p2 + 4 − 4u2. Finally, we obtain

δE =
ω1

4

[
− 2u2 log u2 − 2 log (8 − 4u2) + u2 log (16(2 − u2)) +

+2
(
−1 + u2 +

√
1 − u2 + (u2 − 2) log (1 +

√
1 − u2)

) ]
. (5.5)

This formula describing the one-loop correction to the classical energy of the long (S, J)-

string is our main result. It has to be compared with a corresponding result for the

(S, J)-string spinning in AdS5×S5 given by eq. (2.29) in [23]. Curiously enough, we find that

δEAdS4×CP
3 − 1

2
δEAdS5×S5

= ω1(u
2 − 1) log 2 . (5.6)

This result is in apparent contradiction to the conjecture made in [12]. According to their

claim, the r.h.s. of eq. (5.6) should vanish. In the u→ 0 limit we obtain

δE = −5

2
ω2x log 2 = −5 log 2

2π
log

S

J
. (5.7)

The coefficient in front of log S
J should be interpreted as the one loop correction to the

cusp anomalous dimension.
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A. The coset space AdS4 × CP
3

To make the paper self-contained, in this appendix we recapitulate the basic facts about

the description of the coset space AdS4 × CP
3 = OSP(2, 2|6)/SO(3, 1) × U(3).

As in [2], we introduce the following gamma-matrices

Γ0 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 , Γ1 =




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


 ,

Γ2 =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 , Γ3 =




0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0




(A.1)

satisfying the Clifford algebra relations {Γµ,Γν} = 2ηµν , where ηµν is Minkowski metric

with signature (1,−1,−1,−1). We also define

Γ5 = −iΓ0Γ1Γ2Γ3 , C4 = iΓ0Γ3 , K4 = −Γ1Γ2 . (A.2)

In particular, C4 is the charge conjugation matrix: (Γµ)t = −C4Γ
µC4, while K4 satisfies

(Γµ)t = K4Γ
µK−1

4 . One has

(Γ5)2 = I , K2
4 = −I , C2

4 = −I , Γ5 = K4C4 .

The generators 1
4 [Γµ,Γν ] span the algebra so(3, 1) ∼ usp(2, 2). Adding to this set of

generators the four matrices i
2Γµ, one obtains a realization of so(3, 2).

Consider 10 × 10 supermatrices

A =

(
X θ

η Y

)
, (A.3)

where X and Y are even (bosonic) 4 × 4 and 6 × 6 matrices, respectively. The 4 × 6

matrix θ and the 6 × 4 matrix η are odd, i.e. linear in fermionic variables. As the matrix
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superalgebra, the Lie superalgebra osp(2, 2|6), is spanned by supermatrices A satisfying

two conditions

Ast = −CAC−1 , A† = −ΓAΓ−1 , (A.4)

where C = diag(C4, I6) and Γ = diag(Γ0,−I6). Here Ast stands for the supertranspose

of A:

Ast =

(
Xt − ηt

θt Y t

)
. (A.5)

The bosonic subalgebra of osp(2, 2|6) is usp(2, 2) ⊕ so(6). Explicitly, the fermionic matri-

ces obey

η = −θtC4 , θ∗ = iΓ3θ , (A.6)

i.e. fermions are symplectic Majorana with the total number of real fermionic components

equal to 24.

We further introduce a 6 × 6 matrix K6 and a 10 × 10 matrix K = diag(K4,K6):

K6 = I3 ⊗
(

0 1

−1 0

)
, K = I5 ⊗

(
0 1

−1 0

)
. (A.7)

This matrices can be used to define an automorphism Ω of order four of the complexified

algebra osp(4|6)

Ω(A) =

(
K4X

tK4 K4η
tK6

−K6θ
tK4 K6Y

tK6

)
= −ΣKAstK−1Σ−1 . (A.8)

Here Σ = diag(I4,−I6) is the grading matrix. The orthosymplectic condition for A implies

Ω(A) = (ΣKC)A(ΣKC)−1 ≡ ΥAΥ−1 , (A.9)

i.e. Ω is an inner automorphism. Explicitly,

Υ =

(
Γ5 0

0 −K6

)
. (A.10)

As the vector space, A = osp(2, 2|6) can be decomposed under Ω into the direct sum of

homogeneous components: A =
∑3

k=0 A(k), where the projection A(k) of a generic element

A ∈ osp(2, 2|6) on the subspace A(k) is define as

A(k) =
1

4

(
A+ i3kΩ(A) + i2kΩ2(A) + ikΩ3(A)

)
. (A.11)

In particular, A(0) = so(3, 1) ⊕ u(3).
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Throughout the paper we use the generators Tij of so(6) defined as Tij = Eij − Eji,

where Eij are the standard matrix unities. We also introduce the following six matrices T6

which are Lie algebra generators of so(6) along the CP
3 directions:

T1 = E13 − E31 − E24 + E42 , T2 = E14 − E41 + E23 − E32 ,

T3 = E15 − E51 − E26 + E62 , T4 = E16 − E61 + E25 − E52 ,

T5 = E35 − E53 − E46 + E64 , T6 = E36 − E63 + E45 − E54 .

(A.12)

These generators are normalized as tr(TiTj) = −4δij .

According to [2], a generic SO(6) element parametrizing the coset space CP
3 =

SO(6)/U(3) can be written as

g
CP

= eyiTi . (A.13)

We parametrize CP
3 by means of the spherical coordinates (r, ϕ, θ, α1, α2, α3), or, al-

ternatively, by means of three complex inhomogeneous coordinate wi,

y1 + iy2 = r sin θ cos
α1

2
e

i
2
(α2+α3)+

i
2
ϕ =

r

|w|w1 , (A.14)

y3 + iy4 = r sin θ sin
α1

2
e−

i
2
(α2−α3)+ i

2
ϕ =

r

|w|w2 ,

y5 + iy6 = r cos θ eiϕ =
r

|w|w3 ,

where |w|2 = w̄kwk and sin r = |w|√
1+|w|2

. The geodesic circle described by the angle ϕ corre-

sponds to taking θ = 0 and r = π
4 , or, equivalently, w3 = eiϕ and w1 = 0 = w2. If we further

extract a geodesic angle ϕ by introduce one real field x and two complex fields v1 and v2:

w3 = (1 − x)eiϕ , w1 =
1√
2
v1e

iϕ/2 , w2 =
1√
2
v2e

iϕ/2 , (A.15)

then the corresponding quadratic action for the CP
3 fluctuation modes around the

(S, J)-string solution coincides with the plane-wave action obtained in [2].

B. Kappa-symmetry

Here we present an independent analysis of κ-symmetry transformations in the background

of the (S, J)-string. As was explained in [2], κ-symmetry acts on the coset element by

multiplication from the right:

g → geǫ = g′gc , (B.1)

where gc is a compensating group element from the denominator of the coset. We see that

at linear order in χ and ǫ we get

g → g
O
g

χ
g

B
eǫ = g

O
eχegBǫg

−1
B g

B
≈ g

O
eχ+g

B
ǫg−1

B g
B

(B.2)
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Thus, at the linearized level the fermion matrix χ changes under the κ-symmetry

variation as

χ→ χ+ g
B
ǫg−1

B
. (B.3)

Note also that the compensation matrix gc which depends on the even number of fermions

does not arise for the linearized transformations. The parameter ǫ = ǫ(1) + ǫ(2) in the

above formula is the one found in [2], e.g.,

ǫ(1) = A
(2)
α,−A

(2)
β,−κ

αβ
++ + καβ++A

(2)
α,−A

(2)
β,− +A

(2)
α,−κ

αβ
++A

(2)
β,− − 1

8
str(Υ2A

(2)
α,−A

(2)
β,−)καβ++ , (B.4)

where καβ++ is the κ-symmetry parameter.8 It is easy to find

A(2)
τ = −1

2
g−1

B

(
g−1

O
∂τgO

+G(g−1
O
∂τgO

)tG−1
)
g

B
, (B.5)

A(2)
σ = −1

2
g−1

B

(
∂σGG

−1
)
gB . (B.6)

Hence, in the conformal gauge

A
(2)
τ,− =

1

2
(A(2)

τ −A(2)
σ ) ≡ g−1

B
Âg

B
, (B.7)

where

Â = −1

4

(
g−1

O
∂τgO

+G(g−1
O
∂τgO

)tG−1 − ∂σGG
−1
)
. (B.8)

An element G entering the last formula is determined from eq. (2.7) to be

G =

(
e−

i
2
ρΓ3

K4e
− i

2
ρΓ3

0

0 e
π
4
T5K6e

−π
4
T5

)
=

(
e−iρΓ3

K4 0

0 e
π
2
T5K6

)
. (B.9)

We also note that since we pulled out the factor g
B

out of A(2), the matrix Â is not

element of the space A(2).

Thus, under κ-symmetry transformation the fermionic matrix χ is shifted by

g
B
ǫ(1)g−1

B
= ÂÂκ+ κÂÂ+ ÂκÂ− 1

8
str(Υ2ÂÂ)κ .

In order find out implementation of this formula for χ, we have to understand the structure

of the matrix Â. Calculations reveal the following remarkably simple formula

Â =
ω2

4

(
− i
ω2
e−

i
2
ρΓ3(

κ cosh ρΓ0 − ω1 sinh ρΓ2 + ρ′Γ3
)
e

i
2
ρΓ3

0

0 T34 + T56

)
.

The non-trivial Virasoro constraint written in terms of Â implies

0 = 4 str(ÂÂ) = ρ′2 + ω2
1 sinh2 ρ− κ

2 cosh2 ρ+ ω2
2 , (B.10)

8We present the complete analysis for ǫ(1) only, the computation of ǫ(2) goes along the same lines.
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which is an equation for the function ρ. An important about the matrix Â is that it is

not constant on the world-sheet, quite in opposite to the point-particle case. On the other

hand, since an expression

κ cosh ρΓ0 − ω1 sinh ρΓ2 + ρ′Γ3 (B.11)

multiplied with i takes values in A(2), one can always find a similarity transformation with

an element V from SO(3, 1), which brings Â to a constant matrix, e.g, to Γ0, namely,

κ cosh ρΓ0 − ω1 sinh ρΓ2 + ρ′Γ3 = ω2V Γ0V −1 , (B.12)

where we have taken into account that on solutions of the Virasoro constraint (B.10), the

eigenvalues of matrix (B.11) are ±ω2. For instance, one can take

V = v




ω1 sinh ρ− iρ′ 0 0 ω2 − κ cosh ρ

0 ω1 sinh ρ+ iρ′ ω2 − κ cosh ρ 0

0 ω2 − κ cosh ρ ω1 sinh ρ− iρ′ 0

ω2 − κ cosh ρ 0 0 ω1 sinh ρ+ iρ′


 , (B.13)

where the unessential normalization constant is fixed by requiring detV = 1. Indeed, one

can check that on solutions of the Virasoro constraint the relation (B.12) is satisfied. Thus,

the matrix Â exhibits the following factorizable structure

Â =
ω2

4
V A V

−1 , (B.14)

where we have introduced two matrices:

A =

(
−iΓ0 0

0 T34 + T56

)
, V =

(
e−

i
2
ρΓ3

V 0

0 I

)
, (B.15)

where, in particular, matrix A does not depend on the world-sheet variables. We thus see

that under a linearized κ-symmetry transformation the combination V −1χV undergoes a

shift by an element

ω2

16

[
A

2(V −1κV ) + A (V −1κV )A + (V −1κV )A 2 − 1

8
str(Υ2

A
2)(V −1κV )

]
. (B.16)

An easy calculation shows that the matrix above has a structure

ω2
2

16

(
0 ε

−εtC4 0

)
, (B.17)

where ε the matrix ε depends on 8 fermions only, i.e. the rank of the on-shell κ-symmetry

transformations is equal to eight, confirming thereby the conclusions of [2]. Thus, our

analysis shows that transformation (B.17) suffices to gauge away from the general element

V
−1χV =

(
0 V −1e−

i
2
ρΓ3θ

−(V −1e−
i
2
ρΓ3θ)tC4 0

)
(B.18)

precisely eight fermions.
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Finally, we note that in section (4.2) we made an additional rotation of χ with the

matrix W given by eq. (4.10). To find how the new fermionic matrix transforms under

κ-symmetry, we have to rotate the parameter κ in the same way κ→WκW−1. In the CP
3

sector this rotation effectively leads to modifying the matrix A in the following way

A → A =

(
−iΓ0 0

0 T6

)
,

which is the consequence of e
π
4
T5(T34 +T56)e

−π
4
T5 = T6. This new matrix A coincides with

the one used in the paper [2], where it was concluded that the corresponding κ-symmetry

transformations allow one to make the gauge choice

θT56 = 0 ,

which puts to zero the fifth and the sixth column of θ.
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